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A simple three-state lattice model that incorporates two states for locally ordered and disordered forms of
liquid water in addition to empty cells is introduced. The model is isomorphic to the Blume-Emery-Griffith
model. The locally ordered �O� and disordered �D� forms of water are treated as two components, and we
assume that the density of the D component is larger. The density of the sample is determined by the fraction
of cells occupied by the O and D forms of water. Due to the larger density of the D state, the strength of the
van der Waals �vdW� interactions increases in the direction O-O�O-D�D-D. On the other hand, the H-bond
interactions are assumed only for the O-O pairs. For the vdW and H-bond interaction parameters and the
density ratio of the close-packed and ice forms of water compatible with experimentally known values, we find
liquid-vapor and liquid-liquid transitions and the corresponding critical points in good agreement with other
approaches. Water anomalies are correctly predicted within the mean-field approximation on a qualitative level.
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I. INTRODUCTION

Interactions among water molecules are characterized by
the existence of the hydrogen bond, which is a strongly di-
rectional interaction. Combination of the directionality and
the geometry of the water molecule gives rise to pronounced
local tetrahedral ordering of the molecules in the liquid
phase. The competition between the strong local order and
the global disorder inherent to the liquid state is at the origin
of the several anomalous properties of water, such as the
maximum of density at 4C. The idea that such a competition
could give rise to the coexistence of two types of water
domains—a low-density ordered one and a high-density dis-
ordered one—dates back to Roentgen �1� in 1892 and has
known several rebirths since then, notably by Pauling �2� and
later by Frank and Wen �3� and Robinson et al. �4�. However,
spectroscopic experiments �5� and computer simulations �6�
confirm only indirectly the fact that water would be formed
of a coexistence of such two types of domains of water mol-
ecules, and most probably in supercooled states. Neverthe-
less, the two-state models for water have been very much
appealing in providing a simple physical picture of its struc-
ture and in explaining its anomalies. There are other indirect
indications that water can be in two different local states,
such as, for example, in aqueous mixtures. There are several
experimental pieces of evidence that water in the first solva-
tion shell near ions is in a quite different state than in the
bulk �7�, which leads to marked differences in the viscosity
of these aqueous ionic solutions. Similarly, the aqueous sol-
vation of small polar and nonpolar molecules is often dis-
cussed �8� in terms of kosmotropy versus chaotropy, depend-
ing on their ability to increase or decrease the local order of
water, which is also in relation to the so-called hydrophobic
effect �9�. Water near amino acids has been found to have a
different structural ordering by neutron-scattering experi-
ments �10�. Temperature- and pressure-induced structural
isosbestic points in neat water �11� provide additional experi-
mental support for a two-state description of liquid water.

The implicit existence of the coexistence of two types of
liquid states in water implies possibility of the existence of a
second critical point, presumably in the supercooled region
�12–14�. The existence of such a critical point has been at the
heart of much debates �12–17� and has motivated the appear-
ance of two-state models, both lattice and off-lattice, such as
in Refs. �13,16,18�. It is worth mentioning that recent
critical-point-free approaches are also able to describe the
anomalies of cold water �19,20�.

Lattice models for water have a long history, dating back
to the early work of Bell in 1972 �21�. A detailed list of such
models is given in Ref. �13�. In these early models, water is
often treated with full tetrahedral orientational dependence
more or less explicitly described. The main emphasis of such
models is to capture the fact that the H bonds would form a
network. Recent studies �22–24� of the core-softened off-
lattice models �25� indicate that spherically symmetric inter-
actions are equally able to capture the waterlike anomalies at
low enough temperatures. These results suggest that the wa-
ter anomalies should not need an explicit description of the
details of the interactions even at microscopical level.

The lattice- and continuum-space models introduced in
Refs. �13,14,16,18,26� are quite successful in predicting the
thermodynamics and structure of water, but usually they are
rather complex. For example, in Ref. �16� orientational de-
grees of freedom of water molecules that occupy a bcc lattice
are taken into account. Apart from the van der Waals inter-
action between the occupied nearest-neighbor �NN� sites, the
H-bond energy contribution is assumed for properly oriented
NNs. The open network is promoted by an energy penalty for
occupied sites around the H-bonded pair of sites. The advan-
tage of this model is a possibility of predicting stability of
fluid and solid phases. Unfortunately, on the simple mean-
field �MF� level the model predicts no liquid-liquid separa-
tion, which is found beyond the MF, however. Fundamental
cells with 98 states �and 98 energies� are considered in order
to obtain the equation of state and phase diagram in Ref.
�16�. The complexity of the model and the failure of the
simple MF makes the extension of the model to aqueous

PHYSICAL REVIEW E 78, 021203 �2008�

1539-3755/2008/78�2�/021203�13� ©2008 The American Physical Society021203-1

http://dx.doi.org/10.1103/PhysRevE.78.021203


mixtures rather difficult. In Refs. �27,28� extensions of the
simpler, off-lattice mean-field model of water �29� have been
proposed to mixtures with nonpolar molecules �27,28�.
However, we are interested in mixtures of water with polar
molecules �alcohols, amides, and other weak amphiphiles�,
because such mixtures show intriguing properties �30�; to
some extent they resemble microemulsions formed in binary
water-surfactant and ternary oil-water-surfactant mixtures.
Universal properties of binary water-surfactant and ternary
oil-water-surfactant mixtures are described by simple generic
lattice models �31–35� where water is treated as an ordinary
liquid, because the effective energies involved in the self-
assembly are higher than the energy involved in local order-
ing of water. Self-assembly of weak amphiphiles such as
alcohols may compete with local ordering of water, and in
the case of weak amphiphiles standard models of microemul-
sions are oversimplified. To understand the origin of their
peculiarities it is desirable to introduce a simple model, yet
capable of reproducing the special properties of pure water.
To this end we need a simple model for water in the first
place.

Our purpose here is a construction of a generic lattice
model which correctly predicts the qualitative properties of
water and is as simple as possible. In general, the generic
model represents the simplest system belonging to the class
of systems exhibiting the same universal properties. The uni-
versal properties result from collective phenomena, where
fluctuations over large length scale play the dominant role.
The details of the local molecular structure are irrelevant,
because these local details are averaged over large volume.
The famous example of universal properties are the same
values of the critical exponents for the gas-liquid critical
point in simple fluids, Curie point in magnets, and demixing
critical points in alloys. In the case of simple fluids such a
generic model for the gas-liquid separation is the lattice-gas
model, isomorphic to the Ising model for magnets. The phys-
ics of the gas-liquid critical point of water is also correctly
predicted by the standard lattice-gas model. At high densities
and low temperatures, however, the standard lattice-gas
model is oversimplified. Here we introduce a very simple,
three-state lattice model capable of predicting the special fea-
tures of water. The model turns out to be of the same form as
the Blume-Emery-Griffith �BEG� model �36�.

II. CONSTRUCTION OF THE GENERIC MODEL

In the lattice-gas models one divides space into cubic
cells of a size comparable to the size of molecules. The mi-
croscopic state of the system is determined by specifying the
state of each cell, instead of describing the states of all mol-
ecules. In the simplest lattice-gas model, isomorphic to the
Ising model, just two states of each cell are distinguished: the
cell can be either occupied or unoccupied by the center of
mass of the molecule. In liquid water some molecules form
H bonds with their neighbors. The H bonds are associated
with formation of the local tetrahedral structure and with
larger volume per molecule than in the disordered state. The
density of the whole sample is thus determined by the frac-
tion of molecules that form the local tetrahedral structure. It

is necessary to distinguish between the locally ordered and
locally disordered states, and postulate proper probability
measures for each spatial distribution of these states, to be
able to predict the density of the sample for given intensive
parameters.

The distinction between the presence and absence of the
local tetrahedral order is necessary for reproducing the spe-
cial properties of water. The question is if additional infor-
mation about the structure is necessary for predicting the
water anomalies. We shall assume that the necessary and
sufficient information about the state of the sample is given
when one specifies which cells are empty and selects from
the remaining cells those with the tetrahedral order. Such
partial information about the state of the sample is called the
mesoscopic state. Our hypothesis is that for a description of
collective phenomena leading to the density anomaly, no ad-
ditional information about the local order is necessary, pro-
vided that the energetics of the system is properly taken into
account in the probability measure � exp�−�H�. Here �
=1 /kT, with k and T the Boltzmann constant and tempera-
ture, respectively, and H=E−�N is the mesoscopic
Hamiltonian—a function that relates energy minus chemical
potential times the number of particles to each mesoscopic
state. H is derived below. The above hypothesis will be veri-
fied by comparing the predictions of the mesoscopic model
with experiments.

We should stress that in the mesoscopic description we
lose the information about the number of microscopic states
in the cells occupied by the locally ordered and locally dis-
ordered water. It is expected that the entropy associated with
local ordering in the cell occupied by the locally ordered
water is lower than the entropy associated with local order-
ing in the cell occupied by the locally disordered water. In
the mesoscopic model this difference in entropy associated
with local ordering is disregarded. The results obtained in the
mesoscopic model should shed light on the role of the en-
tropy of the local ordering for the water anomalies.

The locally disordered and locally ordered states will be
labeled 1 and 2, respectively, and the state representing the
empty cell will be labeled 3. In order to introduce the Hamil-
tonian, we should first choose the proper size of the unit cell.
For fixed volume the ratio between the number of molecules
in the closely packed case �no H bonds� and in the perfect
tetrahedral structure is

�HDW

�LDW
= 1 + 2� , �1�

where �HDW and �LDW denote the densities in the close-
packed and perfect tetrahedral structure, respectively, and �
is the model parameter defined by the above equation.

Let us assume for a moment that only empty cells and
state 2 are allowed. The natural choice for the volume v of
the lattice cell is the volume per molecule in the perfect
tetrahedral structure, v0. With this choice the whole density
interval �0,�LDW� can be obtained from the model where the
cells can be either unoccupied or occupied by just one mol-
ecule. The density �LDW corresponds to the occupancy of all
cells. Let us now assume that only empty cells and state 1 are
allowed. In the model where the cells can be either unoccu-

CIACH, GÓŹDŹ, AND PERERA PHYSICAL REVIEW E 78, 021203 �2008�

021203-2



pied or occupied by just one molecule, the cell-volume
should be v=v0�LDW /�HDW�v0, so that the occupancy of all
cells corresponds to the density �HDW. If both states and
empty cells are possible, we should be able to relate the
density of the liquid to the fraction of the cells in state 1 and
the fraction of the cells in state 2. We choose the volume of
the unit cell equal to the volume per molecule in the perfect
tetrahedral structure, v0, and assume that there is one mol-
ecule per cell in state 2, whereas the cell in state 1 contains
�HDW /�LDW molecules.

The energy of the system depends on the number of
H-bonded pairs and on the van der Waals �vdW� interaction.
We shall assume that only NNs interact. This assumption
was verified for the vdW interaction in the context of the
gas-liquid transition in the lattice-gas models in a large num-
ber of works. Clearly, an NN interaction is consistent with
the short range of the H bonds. Since the H bonds are asso-
ciated with the formation of tetrahedral structure, we assume
that each pair of NNs that are both in state 2 contributes −h
to the system energy. The pair of NNs yields no contribution
to the system energy if at least one of the two cells is empty.
The vdW energy of a pair of the nn cells is −a when both
cells are in state 2, −a�1+2�� if one cell is in state 1 and the
other one is in state 2, and −a�1+2��2 if both NN cells are in
state 1. Here a is the vdW parameter. The above form of
interaction energies directly follows from different densities
in the two states, Eq. �1�, and the dependence of the vdW
energy on the product of densities in the considered regions.
Finally, the number of molecules in the system is equal to the
number of cells in state 2 plus �HDW /�LDW times the number
of cells in state 1. The above assumptions define the generic
�or minimal� model �see Fig. 1�.

The mesoscopic Hamiltonian can be written in terms of
the operators representing the state occupancy, which are
�̂i�x�=1,0 when the cell x is or is not in the state i, respec-
tively. For each cell x the occupancy operators satisfy the
condition �i=1

3 �̂i�x�=1. The above condition guarantees that
each cell is in just one state, either 1, 2, or 3. The Hamil-
tonian is defined by

H = − �
x

�
i=1

d

�a�1 + 2��2�̂1�x��̂1�x + ei� + �a + h��̂2�x��̂2�x

+ ei� + a�1 + 2����̂1�x��̂2�x + ei� + �̂2�x��̂1�x + ei���

− ��
x

��̂2�x� + �1 + 2���̂1�x�� . �2�

The first sum runs over all lattice cells x, d is the space
dimension, and ei denotes the unit lattice vector in direction
i, where 1� i�d. With such a form we avoid double count-
ing of the pairs of cells.

It is convenient to introduce new variables—the local
concentration and site occupancy—corresponding to two
order-parameters �OPs�,

ŝ = �̂1 − �̂2, ŝ = 1,− 1,0, �3�

ŝ2 = �̂1 + �̂2, ŝ2 = 1,0, �4�

where for the high-density water �HDW�, low-density water
�LDW�, and vacuum, ŝ=1, −1, and 0 and ŝ2=1, 1, and 0,
respectively. The Hamiltonian in the new variables takes the
familiar BEG-model form �36�

H = − �
x

�
i

�Jllŝ�x�ŝ�x + ei� + 4Jglŝ2�x�ŝ2�x + ei�

+ Q�ŝ�x�ŝ2�x + ei� + ŝ2�x�ŝ�x + ei���

− ���
x

ŝ�x� − ��1 + ���
x

ŝ2�x� , �5�

where

Jll = a�2 +
h

4
, �6�

4Jgl = a�1 + ��2 +
h

4
, �7�

Q = a�1 + ��� −
h

4
. �8�

A mesoscopic state of the sample is given by the series
�ŝ�x��, where ŝ�x� assumes a particular value �1, −1, or 0� in
each cell. The probability of a particular mesoscopic state is
given by

p��ŝ�x��� = �−1e−�H, �9�

with

� = �
�ŝ�x��

e−�H, �10�

where the sum runs over all mesoscopic states �ŝ�x��.

−a−h 2δδ−a(1+2 ) −a(1+2 )

FIG. 1. Nonvanishing nearest-neighbor interactions �upper
panel� and two-dimensional cross sections through a part of a sys-
tem in two mesoscopic states �lower panel�. a and h represent the
van der Waals and H-bond energy parameters, respectively, and 2�
is the relative difference between the close-packed and ice densities
�1�. Dark-gray and light-gray squares represent cross sections
through cells occupied by the closely packed and by the open tet-
rahedral structures, respectively, and the open squares represent
empty cells. The mesoscopic state shown in the lower-left panel is
typical in the �supercritical� liquid, and the mesoscopic state shown
in the lower-right panel is typical for vapor. Probability that a given
mesoscopic state appears is proportional to the Boltzmann factor
exp�−��E−�N��, where the energy E is given by the sum of ener-
gies of all NN pairs �according to the upper panel� and the number
of molecules is N=N1�1+2��+N2, with N1 and N2 denoting the
number of dark-gray and light-gray cells, respectively �see �9� and
�2��.
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The grand-thermodynamic potential is given by the stan-
dard statistical-mechanics formula

	 = − pv0V = − kT ln � , �11�

where p is pressure, V is the number of lattice cells, and v0V
is volume. In the case of waterlike substance there is no
direct way of measuring �ŝ	 and �ŝ2	 separately; the only
measurable quantity is density. The density of water in this
model is given by ��	= �̄�LDW, with

�̄ = ��	/�LDW = ��1 + ���ŝ2	 + ��ŝ	� = 
 −
��	

����x�



��x�=�

,

�12�

where �¯	 denotes the average with the probability �9�; we
replaced � by the cell-dependent chemical potential ��x� in
�5� and used �11�. The �rescaled� density-density correlation
function G�� is defined by

G���x1 − x2� = ���1 + ��ŝ2�x1� + �ŝ�x1����1 + ��ŝ2�x2�

+ �ŝ�x2��	 − �̄2 = 
 −
�2�	

����x1�����x2�



��xi�=�

.

�13�

In the following sections we analyze three limiting cases: T
→0; next, the case of high density and finally the case of low
density. In these limiting cases the model can be simplified.
The simplified versions of the model can be solved or com-
pared to previously found solutions. By analyzing the results
of the simplified versions of the model, we can find for what
ranges of the model parameters the waterlike behavior can be
found. By requiring the consistency of the calculated quan-
tities with the known results for water, we can find the best
choice of parameters.

III. PROPERTIES OF THE MODEL

A. Ground state

Let us first focus on the low-temperature properties of the
model and find the conditions corresponding to the stability
of different states and to the phase equilibria. For T→0 the
probability �9� becomes very narrow, and at T=0 the prob-
ability that any state different from the ground state appears
vanishes. When only the ground-state contributes to � in
�10� and � is fixed, then 	=min�H�. Whether the H as-
sumes a minimum for the state 1, 2, or 3 depends on the
parameters. We shall calculate H for three uniform states:
ŝ=1, ŝ=−1, or ŝ=0 in each cell. The first two states represent
the close-packed and tetrahedral condensed phases, respec-
tively, and ŝ=0 represents the vapor. Note that at T=0 the
density of vapor tends to zero. Note also that in the lattice-
gas models there is no transition between liquid and crystal-
line phases, because it is not possible to distinguish between
long- and short-range order in the condensed state. We are
not interested in the stable crystalline, but in the metastable
liquid phases; therefore, for our purposes this deficiency of
lattice models is in fact an advantage. By comparing the
value of H for ŝ=1, ŝ=−1, and ŝ=0, we can find the regions

in the parameter space �a ,h ,� ,�� corresponding to the sta-
bility of the three phases. From Eq. �2� we obtain

H = �− �1 + 2���3�1 + 2��a + ��V if ŝ = 1,

− �3�a + h� + ��V if ŝ = − 1,

0 if ŝ = 0.
� �14�

The coexistence between two phases is obtained by equating
the values of H in these phases. In this way we find that the
coexistence between the s=0 and s=−1 phases occurs for

�

a
= − 31 +

h

a
� . �15�

At the coexistence between the s=1 and s=−1 phases we
have

�

a
= − 6�1 + �� +

3h

2a�
. �16�

Finally, the coexistence between the s=0 and s=1 is given
by

�

a
= − 3�1 + 2�� . �17�

All three phases can coexist at a triple point if the hydrogen-
bond and vdW energies are such that h=2�a. The depen-
dence of the T=0 phase diagram on the parameter ratio h /a
is shown in Fig. 2.

For h�2�a a transition between vapor �vacuum� and
high-density �s=1� phases occurs at � /a=−3�1+2��. For h
�2�a the system does not exhibit the transition between the
two �metastable� liquid phases. For h
2�a there is the tran-
sition between vacuum and the low-density phase for � /a
=−3�1+h /a� and, next, the transition between the low- and
high-density phases for � /a=−6�1+��+3h / �2�a�. Such a
coexistence between two metastable liquid phases is hypoth-
esized for water. Thus, for parameters that satisfy the condi-
tion

h

a

 2� , �18�

the waterlike behavior can be expected in this model.
The value of H at the coexistence between the two dense

phases, ŝ=1 and ŝ=−1, can be obtained by inserting �16� into
�14�. Because for T→0 we have 	→H, we obtain from
�11� the pressure at the coexistence between the two liquid
phases for T→0:

pcoexv0 = 3�1 + 2�� h

2�
− a�, T → 0. �19�

By equating the left-hand side �LHS� of the above equation
to the value expected for real water, we obtain the first rela-
tion between the model parameters. The anomalous and nor-
mal properties of water are observed for p� p0 and for p

 p0, respectively, where p0�2000 bars. We assume that
pcoex� p0 at the coexistence between the two metastable liq-
uid phases for T→0.
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B. Model in the case of high �

In the limiting case of high densities we can reduce the
model to a simplified version by eliminating the states �ŝ�x��
that occur with very low probability. In the high-density case
the empty cells are very rare, and the mesoscopic states with
ŝ=0 can be neglected in calculating the average quantities. In
that case ŝ=1, −1, and by inserting ŝ2=1 into Eq. �5� we end
up with the Ising model

Hll = − �
x

�
i

Jllŝ�x�ŝ�x + ei� − H1
ll�

x
ŝ�x� − H0

ll�
x

1,

�20�

where

H1
ll = 6Q + �� �21�

and

H0
ll = 12Jgl + �1 + ��� . �22�

The critical temperature in the Ising model is known from
simulations, and its value is kTc�4.5Jll. From this result and
from �6� we have

Tc
ll �

4.5Jll

k
=

4.5

k
a�2 +

h

4
� . �23�

By assuming that the LHS of �23� is equal to the temperature
at the critical point of the metastable liquid-liquid separation
in water, we obtain the second relation between the model
parameters. The phase coexistence in the Ising model occurs
for H1

ll=0, and from �21� we obtain the chemical potential at
the liquid-liquid coexistence �including the critical point�,
�c=−6Q /�.

C. Model in the case of low �

Let us focus on the case of low densities. There is no
distinction between structured and unstructured water, when
the NNs of an occupied cell are typically empty, as in the gas
or supercritical phase. We assume that we can average over ŝ
in the Hamiltonian �5�. The average value of ŝ is zero. For
ŝ=0 and ŝ2=0 ,1 we have

Hgl = − �
x

�
i

4Jglŝ2�x�ŝ2�x + ei� + − ��
x

�1 + ��ŝ2�x� .

�24�

By changing the variables,

ŝ2 =
�̂ + 1

2
, �25�

we again obtain the Ising model

Hgl = − �
x

�
i

Jgl�̂�x��̂�x + ei� − H1
gl�

x
�̂�x� − H0

gl�
x

1,

�26�

with

H1
gl = 6Jgl +

1 + �

2
� , �27�

H0
gl = 3Jgl +

1 + �

2
� . �28�

The chemical potential at the critical point and along the
phase coexistence is given by H1

gl=0 and �c=−12Jgl / �1+��.
We again use the simulation result for the temperature at the
critical point in the Ising model, and from �7� we obtain

Tc
gl �

4.5Jgl

k
=

4.5

4k
�a�1 + ��2 +

h

4
� . �29�

By equating the LHS of the above to the temperature at the
gas-liquid critical point in water, we obtain the third relation
between the model parameters.

D. Model parameters for water

Note that in water the temperature of the gas-liquid criti-
cal point is much higher than the temperature of the meta-
stable liquid-liquid critical point. We should thus require that
in waterlike substance Tc

gl�Tc
ll. The above condition and �18�

FIG. 2. The ground-state dependence on the model parameters
a, h, and � and on the chemical potential �. Regions corresponding
to stability of different phases �close-packed, tetrahedral, and
vacuum� at T=0 are indicated, and the solid lines between stability
regions of two phases represent the corresponding phase coexist-
ence. Different values of the ratio between the H-bond and vdW
energies, h /a, correspond to different substances. The dotted and
dashed lines represent examples of the ground-state dependence on
� for two substances showing qualitatively different behavior.
Along the dotted line the vapor and close-packed phases are stable
for � /a�−3�1+2�� and � /a−3�1+2��, respectively. Such “nor-
mal” behavior is found for h /a�2�. Along the dashed line the
vapor and close-packed phases are stable for low �� /a
�−3�1+h /a�� and high �� /a−6�1+��+3h / �2�a�� values of
� /a, respectively, while for −3�1+h /a��� /a�−6�1+��
+3h / �2�a� the tetrahedral condensed phase is found. The stability
of the tetrahedral condensed phase that characterizes waterlike sys-
tems is found for parameters that satisfy the inequality h /a
2�.
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give together the range of h /a for which the model can ex-
hibit similar properties as real water

2� �
h

a
�

4�1 + 3���1 − ��
3

. �30�

From �23� and �29� we obtain

a = a0k, a0 =
4Tc

gl − Tc
ll

4.5�1 + 2��
, �31�

h = h0k, h0 = 4
�1 + ��2Tc

ll − 4�2Tc
gl

4.5�1 + 2��
. �32�

We assume

Tc
gl = 650 K, Tc

ll = 180 K, pcoex = 1900 bars. �33�

From the above and Eqs. �31�, �32�, and �19� we obtain a
relation between v0 and �. Choosing v0=35 Å3, we obtain
�=0.12, a0=433.7 K �a=598.5�10−23 J=3.6 kJ /mol�, h0
=135.02 K �h=186�10−23 J=1.2 kJ /mol�. These values are
in semiquantitative agreement with the water parameters.
The H-bond energy is small compared to the value
23 kJ /mol, but in the mesoscopic model we do not consider
the individual bond, but rather the interaction energy aver-
aged over different orientations and distances between the
molecules. Note that there are four NNs in the tetrahedral
structure and six NNs on the simple cubic lattice. The H
bond is strongly directional, and by averaging over all orien-
tations we obtain

4 � 23 kJ/mol

6 � 4�
� 1.83 kJ/mol. �34�

Note that we could fix the model parameters based on
experimental values. However, the presence of the lattice
structure changes the value of the critical temperature for
given energy parameters; therefore, we proceeded in the way
described above.

IV. RESULTS IN THE MEAN-FIELD APPROXIMATION

The BEG model was first solved in Ref. �36� in the MF
approximation. Details of our version of the MF approxima-
tion can be found for example in Refs. �33,36�. In the MF
approximation the equation of state, the spinodal line, and
the transitions between uniform phases are correctly de-
scribed on a qualitative level. However, when fluctuations
are included beyond the MF approximation, the stability re-
gion of the disordered phase enlarges. Thus, the critical-point
temperature obtained in the MF approximation, Tc

MF, is over-
estimated. In the case of the Ising model, Tc /Tc

MF�3 /4.
Also, fluctuations yield a positive contribution to the grand
potential 	=−pv0; therefore, the MF result for pressure,
pMF, is overestimated as well. Another important source of
inaccuracy of the quantitative results of the model is the
underlying lattice. In particular, the symmetrical shape of the
gas-liquid coexistence line, resulting from the underlying lat-
tice, differs significantly from the shape of the corresponding
line in real systems. The above features should be taken into

account when comparing the MF results with experiments.
Since the MF approximation for the BEG model is well
known, we describe only the main steps of derivation of the
equation of state, the spinodal line, and the phase diagram.
The density-density correlation function is calculated in the
Gaussian approximation.

In the MF approximation the grand potential �11� is ap-
proximated by the minimum with respect to � and s of the
functional

	MF�s�x�,��x�� = H�s�x�,��x�� − TS�s�x�,��x�� , �35�

where the entropy on the lattice has the form

S�s�x�,��x�� = − k�
x
���x� + s�x�

2
ln��x� + s�x�

2
�

+
��x� − s�x�

2
ln��x� − s�x�

2
�

+ �1 − ��x��ln�1 − ��x��� , �36�

and H�s�x� ,��x�� is given in Eq. �5� with ŝ and ŝ2 replaced
by s and �, respectively. 0���1 is the fraction of occupied
cells and is analogous to the number density in a mixture
isomorphic to our model. Here −1�s=2x−1�1, and x is
analogous to the concentration of one species �locally disor-
dered water� in the corresponding mixture. In order to sim-
plify the notation we rewrite Eq. �12� in the form

�̄ =
��	

�LDW
= �1 + ��� + �s . �37�

For uniform phases Eq. �35� assumes the explicit form

	MF�s,��/V = − pv0 = − �3Jlls2 + 12Jgl�2 + 6Qs�

+ ���s + �1 + ����� − TsV, �38�

where we used Eq. �5� and where

sV = − k�� + s

2
ln� + s

2
� +

� − s

2
ln� − s

2
�

+ �1 − ��ln�1 − ��� �39�

is the entropy per lattice cell. The explicit forms of the mini-
mum conditions,

�	MF

�s
= 0, �40�

�	MF

��
= 0, �41�

are given in Appendix A.

A. Spinodal line and phase diagram

The function 	MF�s ,�� assumes a minimum for s and �
satisfying Eqs. �40� and �41� when its second derivative is
positive definite. The boundary of stability is given by
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det��2�	MF� = 0, �42�

where �2�	MF is the matrix of the second derivative of
�	MF with respect to � and s. The rather lengthy explicit
expression for T=Ts�� ,s�, following from Eq. �42�, is given
in Appendix A �Eq. �A3��, and the surface T=Ts�� ,s� is
shown in Fig. 3.

In equilibrium � and s are not independent, and the rela-
tion between them �Eqs. �40� and �41� and Eqs. �A1� and
�A2� in Appendix A� is given by

� kT

2
ln� + s

� − s
� − 6Jlls − 6Q���1 + ��

= � kT

2
ln �2 − s2

4�1 − ��2� − 24Jgl� − 6Qs�� . �43�

The spinodal line in the ��, T� phase diagram is given as a
parametric equation in Eqs. �A3�, �A6�, and �37� and is
shown in Fig. 4. More calculation details are given in Ap-
pendix A.

From the simplified versions of the model �Secs. III B and
III C� we can obtain the approximate forms of the spinodal
line. For low density we assume s=0—i.e., the density is �̄
= �1+���—and we obtain the approximate form of the spin-
odal �see Sec. III C�:

kT = 24Jgl��1 − �� = 24Jgl �̄�1 + � − �̄�
�1 + ��2 . �44�

The above form is valid only for ��1. For high density we
assume �=1—hence �̄= �1+��+�s—and consider the sim-
plified model described in Sec. III B. The spinodal for the
model �20� assumes the form

kT = 6Jll�1 − s2� =
6Jll

�2 ��̄�2�1 + �� − �̄� − 1 − 2�� . �45�

Equations �44� and �45� represent the intersection of the sur-
face T=Ts�� ,s� with the planes s=0 and �=1, respectively.

For �→1 the approximation �44� fails, because from �43� it
follows that when �→1, then s→−1 at the gas-liquid
branch of the spinodal �see Fig. 3�. Water anomalies result
from this failure of the simple lattice-gas model. On the other
hand, Eq. �45� is a good approximation; it almost coincides
with the results of the full model.

The phase equilibria shown in Fig. 4 are obtained by
equating the values of p �Eq. �38�� and � �Eqs. �40� and
�41�� for two phases � and � characterized by the pair of
variables ���, s�� and ���, s��. For more details, see Appen-
dix B.

In the simplified versions of the model �Secs. III B and
III C� we obtain the simple expressions

kT =
12Jgl�2�̄ − �1 + ���

�1 + ���ln��̄� − ln�1 + � − �̄��
�46�

and

kT =
12Jll��̄ − �1 + ���

��ln��̄ − 1� − ln�1 + 2� − �̄��
�47�

for the gas-liquid and the liquid-liquid transition, respec-
tively. As in the case of the spinodal, Eq. �46� is reasonably
good at the gas branch and fails at the liquid branch of the
gas-liquid coexistence. The approximation �47� for the
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FIG. 3. The spinodal surface T=Ts�� ,s� as a function of s and
�. The s and � are not independent in equilibrium states, and in the
MF approximation the relation between them is given in Eq. �43�.
The cross section of the surface T=Ts�� ,s� with the surface �43� is
shown as the thick line. This line together with Eq. �37� gives the
spinodal line that represents the loci of the actual instability of the
model system in the ��, T� diagram. T is in kelvins; s and � are
dimensionless.

0 0.2 0.4 0.6 0.8 1 1.2
ρ/ρ LDW

0

200

400

600

800

1000

T
(K

)

200 400 600 800
T(K)

0

1000

2000

3000

p(
ba

r)

(b)

(a)

FIG. 4. Spinodal �dashed� and binodal �solid� lines in the MF
approximation. The symbol shows the experimental critical point of
water. Note that exact values of the critical temperatures in this
model are expected to be Tc�0.75Tc

MF. � /�LDW is dimensionless;
�LDW is the model parameter, and its order of magnitude is �LDW

��ice�0.9 g /cm3.
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liquid-liquid branch cannot be distinguished from the exact
MF result in Fig. 4.

Note that the slope of the liquid-liquid coexistence line
p�T� is very small, but positive, contrary to the common
expectation that the entropy per mole in the LDW is lower
than the entropy in the HDW. We verified that in the MF
approximation pcoex� pc

ll for 0.05���0.2, where pcoex is
pressure at the coexistence at very low T �see �19�� and pc

ll is
pressure at the critical point of the liquid-liquid coexistence.
Thus, dp�T� /dT
0 is the property of the MF solution of the
model for the relevant range of parameters. At the present
stage we are not able to verify if beyond the MF approxima-
tion the slope of the coexistence line remains positive. As
already mentioned, fluctuations usually lead to lower values
of pressure and the fluctuation contribution increases with
increasing temperature. We can expect that exact solution for
the coexistence line in this model should correspond to a
smaller slope of the line p�T�, and since this slope is very
small in the MF approximation, no definite conclusions con-
cerning the sign of dp�T� /dT can be drawn before reliable
simulations are performed. In any case, even if it turns out
that beyond the MF approximation dp�T� /dT�0 in this
model, its magnitude is expected to be much smaller than in
other models where orientational degrees of freedom are ex-
plicitly included �13,16,18,29�. We stress that our model
shows that the difference in the entropy associated with the
local ordering in the LDW and HDW is not necessary for
obtaining the density anomaly. This is reminiscent to the
presence of the density anomaly in the ramp model, where
interactions are independent of orientations �22,24�.

B. Equation of state, thermal expansion, and heat capacity

The equation of state �EOS� in ��, p, T� variables is given
in Eq. �38�, with � and s eliminated with the help of Eqs.
�40� and �41�. In order to obtain the EOS in the �, p, and T
variables, we eliminate � from �38� by using �40�, and by
subsequent use of Eqs. �40� and �41� we obtain the simple
form, valid for ��1,

pv0 = − 3Jlls2 − 12Jgl�2 − 6Q�s − kT ln�1 − �� . �48�

The EOS in the ��, p, T� variables is given in Eq. �48�, with
s and � expressed in terms of �̄ and T by solving Eqs. �43�
and �37�. Some calculation details are given in Appendix C.
The plots of the isobars T��� for p=10, 100, 653, 1000,
1950, 2085, and 2500 bars are shown in Fig. 5. Note that the
shape of the isobars for pcoex� p� pc

ll results from the posi-
tive slope of the liquid-liquid coexistence line p�T� in our
simple MF approximation.

In the asymptotic cases of very low and very high density,
the EOS assumes simpler forms that can be obtained from
the simplified versions of the model described in Secs. III B
and III C. Let us first describe the case of low density. By
assuming s=0, we obtain �̄= �1+��� and

pv0 +
12Jgl

�1 + ��2 �̄2 = − kT ln1 −
�̄

1 + �
� , �49�

which is the lattice-gas version of the vdW EOS. Note that
the RHS of Eq. �49� diverges for �̄→1+�; therefore, for

large densities pressure is significantly overestimated. This
well-known deficiency of the lattice-gas models results from
the hole-particle symmetry on the lattice, which in real sys-
tems is absent.

For high density we assume �=1 and consequently �̄
= �1+��+�s �see Sec. III B�. The EOS for high densities
takes the form �see �38� and �40��

kTL��̄� = pv0 + R��̄� , �50�

where

L��̄� =  1

2�
ln��̄ − 1� −

1 + 2�

2�
ln�1 + 2� − �̄� + ln�2���

�51�

and

R��̄� =
3Jll

�2 �̄2 + 6Q
1 + �

�
− 12Jgl − 3Jll1 + �

�
�2

. �52�

The critical pressure is given by pcv0=kTcL��̄c�−R��̄c�
�2085 bars, where Tc�240 K and �̄c=1+� are obtained
from Eq. �45�. Note that L��̄0�=0 for �̄0�1.111 and the
pressure p0=−R��̄0� /v0�2084 bars is independent of T. For
p
 p0, T��̄� given in Eq. �50� decreases from T��̄0�=� for �̄
increasing from �̄0, whereas for p� p0, T��̄� decreases from
T��̄0�=� for �̄ decreasing from �̄0. Hence, p0 is the border-
line value separating the normal �negative slope of T����
from the anomalous �positive slope of T���� density behavior
for p
 p0 and p� p0, respectively. The density �̄0�1.111 is
the maximum density for p� p0. Note that in the simplified
model �Sec. III B� no holes are present, so its validity is
limited to relatively low T. At higher T the negative slope of
T��� is found in the full model, as seen in Fig. 5.
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FIG. 5. �Color online� T��� isobars �solid lines�. From the left to
the right lines p=10, 100, 653, 1000, 1950, 2085, and 2500 bar.
The dashed lines are the phase transitions. The critical pressures for
the gas-liquid and liquid-liquid transitions are pc

gl�653 bars and
pc

ll�2085 bars, respectively. In the MF approximation the extent of
the two-phase regions and pressure are both overestimated com-
pared to exact results. In addition, the pressure is overestimated due
to the lattice structure. The exact values of the critical temperatures
are expected to be Tc�0.75Tc

MF. T is in kelvins, and � /�LDW is
dimensionless; �LDW is the model parameter, and its order of mag-
nitude is �LDW��ice�0.9 g /cm3.
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Since for �=1 there are no empty cells, the EOS �50�
shows no singularity for �̄=1+�. On the other hand, �L��̄��
→� for �̄→1 and �̄→1+2�. Therefore we expect signifi-
cantly overestimated pressures for �̄→1 and �̄→1+2�.

The thermal expansivity

� = 
 −
1

�̄

��̄

�T



p

�53�

can be obtained by direct differentiation of the isobars shown
in Fig. 5 and is shown in Fig. 6 for p=100 and 1000 bars. As
expected from the shape of the isobars, we obtain the char-
acteristic anomalous negative expansivity for the relevant
range of temperature.

The isobaric heat capacity is given by

cP = 
T
��sVNA/�̄�

�T



p
, �54�

where sVNA / �̄ is the molar entropy, with the entropy per cell
sV given in Eq. �39� �ideal entropy of mixing�, and NA is the
Avogadro number. The isobaric heat capacity is shown in
Fig. 7 for p=100 and 1000 bars. Note the increase of the
heat capacity upon cooling at constant pressure for the rel-

evant range of temperatures, in agreement with the anoma-
lous behavior of water. Recall that in calculating the entropy
we disregarded the difference in the entropy of local order-
ing in the locally ordered and locally disordered water �cells
with ŝ=−1 and ŝ=1, respectively�. Evidently, the anomalous
heat capacity results from the entropy associated with differ-
ent spatial distributions of the locally ordered and locally
disordered regions, rather than from the entropy associated
with local ordering in regions on the molecular length scale.

C. Density-density correlation function
and the compressibility

The density-density correlation function �13� can be writ-
ten in the form

G�� = �1 + ��2G�� + �2Gss + 2��1 + ��G�s, �55�

where according to standard rules G��= �C���
−1 , with �C� de-

noting the matrix of the second derivative of the function
�	MF�s ,��. The explicit form of �C� in Fourier representa-
tion is

C̃���k� =
�

�2 − s2 +
1

1 − �
− 4JglZ , �56�

C̃�s�k� = −
s

�2 − s2 − QZ , �57�

C̃ss�k� =
�

�2 − s2 − JllZ , �58�

where we introduced Z=2��i=1
3 cos�ki� and k= �k1 ,k2 ,k3�.

Standard algebra yields the expressions

G̃ss�k� =
� − s2 − 4Jgl��2 − s2��1 − ��Z

1 + AD1Z + AD2Z2 , �59�

G̃���k� =
AN0 + AN1Z

1 + AD1Z + AD2Z2 , �60�

where the coefficients ANi and ADi are given in Appendix C.
Their values should be calculated for s and �, which satisfy
the equilibrium condition �43�.

The results of the lattice models for fluids are meaningful
for distances much larger than the lattice constant, where the
lattice structure is irrelevant. For k→0 we have Z=��6−k2

+O�ki
2kj

2��, where k2=�i=1
3 ki

2, and up to O�k2� Eqs. �59� and
�60� show no anisotropy resulting from the lattice structure:

G̃f f�k� �
Af f

�� f f
−2 + k2�

, k → 0, �61�

where f denotes s or �. The correlation function Gss�k� is
analogous to the correlation function for concentration fluc-
tuations in binary mixtures. The region of excess concentra-
tion of one component in this model is analogous to the
cluster of H-bonded molecules. The average spatial extent of
the “cluster” is of the order of the correlation length for the
concentration of the locally ordered �or disordered� compo-
nent.
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FIG. 6. Thermal expansivity �53� for p=100 bars �dashed line�
and p=1000 bars �solid line�; T is in kelvins. � is in inverse
kelvins. Beyond the MF approximation we expect a shift of the plot
towards lower T values.
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FIG. 7. Isobaric heat capacity �54� for p=100 bars �dashed line�
and p=1000 bars �solid line�. T is in kelvins �K�; cp is in J/K/mol.
Beyond the MF approximation we expect a shift of the plot towards
lower T values.
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For �=1 and s=0 the correlation functions assume the
simple form

G̃���k� = �2G̃ss�k� � �2 kT/Jll

��−2 + k2�
, k → 0, �62�

and in real space

rGss�r� �
kT

4�Jlle
−r/�. �63�

The correlation length

� = �ss = ��� = �kT/Jll − 6 �64�

is shown in Fig. 8 as a function of T. The above approximate
forms are valid for the parameter range where the empty
cells are very rare—i.e., for high densities and low tempera-
tures.

The isothermal compressibility in � and T variables is
given by

�T =
1

�

��

�p
=

G̃���0�v0

kT�̄2 =
AN0kT + 6AN1

�kT�2 + 6AD1kT + 36AD2

v0

�̄2 ,

�65�

where �T as a function of T and p can be obtained by elimi-
nating � and s from �65� with the help of �43� and �48�. The
result is shown in Fig. 9 for p=100 and 1000 bars. The
anomalous behavior of the isothermal compressibility is
found in this model only for high pressures �but lower than
p0�2000 bars�. As discussed in the context of the EOS,
pressure is significantly overestimated in the lattice models.

V. SUMMARY

We have introduced a very simple, three-state lattice
model for waterlike fluid. The model is a special version of
the BEG model �36�. Water is treated as a mixture of two
components, whose chemical potentials are not independent.
One component represents locally ordered and the other one
locally disordered water. It is assumed that the density of the
disordered component is larger, and the ratio between the

chemical potentials is given by the density ratio 1+2�. Inter-
action potentials of the van der Waals type are proportional
to the common parameter a and to the product of densities of
the interacting species. In addition, the H-bond interaction h
is assumed for the component representing the locally or-
dered water. The liquid-liquid critical point in this model is
identified with the critical point of the demixing transition in
the corresponding mixture. We fix the model parameters by
requiring that the critical points for the gas-liquid and demix-
ing transition coincide with the experimental values and the
demixed components coexist at very low temperature for p
=1900 bars. There are thus three relations between four
model parameters �, a, h, and the volume per particle in the
ice structure, v0. We arbitrarily choose the volume per par-
ticle in the ice structure, v0=35 Å3. The chosen parameters
are in semiquantitative agreement with experimental values.

We solve the model in mean-field approximation. The
shape of the gas-liquid coexistence line �Fig. 4� is in quali-
tative agreement with earlier theoretical and experimental re-
sults �16,18�. The maximum-density temperature, however,
is too high compared to real water. The shape of the phase-
coexistence lines depends on the model parameters, espe-
cially on �, but we did not attempt to find the best choice of
parameters. Improvement of the quantitative results is ex-
pected beyond the simple MF approximation. Note that in
Ref. �16� water anomalies are not found on the same MF
level as in our case. The anomalous density increase with
temperature for p� p0�2084 bars in this model is explained
as follows. For low T and p� p0�2084 bars the volume
fraction of the low-density component is high. When T in-
creases, the increasing role of entropy leads first to mixing of
the locally ordered and disordered components that occurs at
a relatively low energy cost. Hence, density increases. Fur-
ther heating leads to a still more important role of entropy.
As a consequence, the two components start to mix with
empty cells —this occurs at a larger energy cost than mixing
of the locally ordered and locally disordered components.
The presence of the empty cells leads in turn to a decrease of
density, as shown schematically in Fig. 10.

The EOS, thermal expansion, isobaric heat capacity, cor-
relation length, and compressibility also show qualitative
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FIG. 8. The correlation length for �=1 and s=0. � is in ang-
stroms; T is in kelvins. In our MF approximation, Tc
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FIG. 9. Compressibility as a function of temperature for p
=1000 bars �solid line� and p=100 bars �dashed line�. T is in
kelvins; �T is in GPa−1.
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features characteristic of water, but pressure is significantly
overestimated in the simple MF approximation. Overesti-
mated pressure is expected for the lattice models and in the
MF approximation, and this deficiency will be removed �to
some extent at least� in the off-lattice version of the model
that we plan to develop. Beyond the MF approximation pres-
sure should be lower; the effect of fluctuations depends on T,
and the slope of the coexistence lines can be significantly
different in an exact solution of our model.

Orientational ordering of water molecules is not taken
into account directly, but only through the existence of the
locally ordered water, which results from the orientational
ordering. Orientational degrees of freedom certainly influ-
ence quantitative results for the grand potential �pressure�
and entropy; for quantitative agreement of the EOS with real
water, the generic model is certainly oversimplified. On the
qualitative level the only result that disagrees with common
expectations is the slope of the �metastable� liquid-liquid co-
existence line p�T�, which is positive �but very small� in the
simple MF approximation. The slope of this line beyond the
MF approximation is not known; it might be negative, but
large negative values are not expected. This is a direct con-
sequence of not taking into account the difference in entropy
associated with local ordering in the cells occupied by the
LDW and HDW states respectively.

We have shown that the model as simple as the BEG
model with properly adjusted parameters is capable of pre-
dicting the distinctive anomalies of water. This result sug-
gests that the entropy associated with different spatial distri-
butions of the locally ordered and disordered regions is
responsible for all the water anomalies, since they are found
even when the entropy associated with local ordering in the
locally ordered and locally disordered structures is disre-
garded.

Finally, the relative success of this simple model in the
simplest MF approximation indicates that similar approach
can be used to study other associating liquids, such as alco-
hols, for example, as well as aqueous mixtures with polar
molecules.

ACKNOWLEDGMENTS

This work was partially supported by the Polish Ministry
of Science and Higher Education, Grant No. NN 202 006034
and partially by the POLONIUM project.

APPENDIX A: SPINODAL LINE

The explicit forms of �40� and �41� are the following:

� = � kT

2
ln� + s

� − s
� − 6Jlls − 6Q���−1, �A1�

� = � kT

2
ln �2 − s2

4�1 − ��2� − 24Jgl� − 6Qs��1 + ��−1.

�A2�

From Eq. �42� we obtain the explicit expression for the spin-
odal surface in the �� ,s ,T� variables:

kTs��,s� = − b��,s� + ��s��,s� , �A3�

where

�s��,s� = b��,s�2 − 36�4JllJgl − Q2���2 − s2��1 − �� , �A4�

b��,s� = − 3�Jll� + 4Jgl��1 − �� + 2Qs�1 − �� − Jlls2� . �A5�

From the relation �43� we can obtain temperature as a func-
tion of � and s. By equating this temperature with Ts given in
�A3�, we find that along the spinodal line the relation be-
tween � and s is given by

− b��,s� + ��s��,s�

=
12���1 + ��Jll − �Q�s + ��1 + ��Q − 4Jgl����

ln�� + s

� − s
2�1 − ��

� − s
�2�� .

�A6�
APPENDIX B: PHASE EQUILIBRIA

Equations �40� and �41� can be written in the form

s = Fs�s,��,�,T�, � = F��s,��,�,T� , �B1�

where

F��s,��,�,T� =
2 cosh��Rs�e�R�

�0
, �B2�

Fs�s,��,�,T� =
2 sinh��Rs�e�R�

�0
, �B3�

�0 = 2 cosh��Rs�e�R� + 1, �B4�

Rs = 6�Jlls + Q�� + �� , �B5�

R� = 6�4Jgl� + Qs� + �1 + ��� . �B6�

We look for the fixed points of �B1� by using iterations
(si+1=Fs�si ,�i� ,�i+1=F��si ,�i�). The solutions give s and �

1T T2 T3<<

p<p

p>p
0

0

FIG. 10. Schematic showing a sequence of typical configura-
tions for p� p0�2000 bars �top� and p
 p0�2000 bars �bottom�
and three different temperatures. Density ratio between the dark
gray and light-gray regions is 1+2�
1. For more explanations
concerning the symbolic representation of the mesoscopic states,
see Fig. 1.
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in the stable or metastable phase for given T and �. The
stable phase corresponds to a lower value of −pv0. At the
phase equilibria, pv0�s� ,���= pv0�s� ,���, where � and � de-
note the two coexisting phases. This method allows also for
obtaining the EOS isotherms p��̄�.

APPENDIX C: EOS

Here we describe the method for obtaining the EOS iso-
bars. From Eq. �48� we obtain s=s1�� ,kT , p� or s
=s2�� ,kT , p�, where

s1,2��,kT,p� =
− 6Q� � ����,kT,p�

6Jll �C1�

and

���,kT,p� = 36Q2�2 − 12Jll�p + 12Jgl�2 + kT ln�1 − ��� .

�C2�

The EOS is given by the parametric equations

�̄��,kT,p� = �1 + ��� + �s1��,kT,p� �C3�

and

F1��,kT,p� = 0 �C4�

if Eq. �C4� has a solution. When Eq. �C4� has no solutions,
the EOS is given by the parametric equations

�̄��,kT,p� = �1 + ��� + �s2��,kT,p� �C5�

and

F2��,kT,p� = 0, �C6�

where

Fi��,kT,p� = kT ln�� + si

� − si
2�1 − ��

� − si
�2�� − 12���1 + ��Jll

− �Q�si + ��1 + ��Q − 4Jgl���� . �C7�

The latter relation follows from �43�. Depending on param-
eters, either �C4� or �C6� has solutions. Accordingly, the den-
sity is given either in Eq. �C3� or �C5�, respectively.

APPENDIX D: CORRELATION FUNCTION

The explicit forms of the coefficients in Eq. �60� are the
following:

AN0 = ��1 + ��2 + �2���1 − ��� + 2��1 + ����1 − ��s

+ �2��2 − s2� , �D1�

AN1 = �2��1 + ��Q − 4�2Jgl − �1 + ��2Jll��1 − ����2 − s2�

= − h�1 + 2��2, �D2�

AD1 = − �4Jgl�1 − ��� + Jll�� − s2� + 2Qs�1 − ��� ,

�D3�

AD2 = �4JglJll − Q2��1 − ����2 − s2� . �D4�
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